
Sequence Alignment & Computational Thinking
Michael Schatz

Sept 3, 2013
QB Bootcamp Lecture 2

Outline

Part 1: Overview & Fundamentals

Part 2: Sequence Analysis Theory
•  Intro to alignment and algorithms
•  Understanding Bowtie

Part 3: Genomics Resources
Part 4: Unix Primer
Part 5: Example Analysis

Milestones in Molecular Biology
There is tremendous interest to sequence:

•  What is your genome sequence?
•  How does your genome compare to my genome?

•  Where are the genes and how active are they?
•  How does gene activity change during development?
•  How does splicing change during development?

•  How does methylation change during development?
•  How does chromatin change during development?
•  How does is your genome folded in the cell?
•  Where do proteins bind and regulate genes?

•  What virus and microbes are living inside you?
•  How has the disease mutated your genome?
•  What drugs should we give you?

•  …

Sequencing Centers

Next Generation Genomics: World Map of High-throughput Sequencers
http://pathogenomics.bham.ac.uk/hts/

Worldwide capacity exceeds 15 Pbp/year

Sequence Alignment
•  A very common problem in computational biology is to find

occurrences of one sequence in another sequence

–  Genome Assembly
–  Gene Finding
–  Comparative Genomics
–  Functional analysis of proteins
–  Motif discovery
–  SNP analysis
–  Phylogenetic analysis
–  Primer Design
–  Personal Genomics
–  …

Personal Genomics
How does your genome compare to the reference?

Heart Disease

Cancer

Creates magical
technology

Searching for GATTACA
•  Where is GATTACA in the human genome?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

No match at offset 1

•  Strategy 1: Brute Force

Searching for GATTACA
•  Where is GATTACA in the human genome?

•  Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

Match at offset 2

Searching for GATTACA
•  Where is GATTACA in the human genome?

•  Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A …

No match at offset 3…

Searching for GATTACA
•  Where is GATTACA in the human genome?

•  Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

No match at offset 9 <- Checking each possible position takes time

Brute Force Analysis

•  Brute Force:
–  At every possible offset in the genome:

•  Do all of the characters of the query match?

•  Analysis
–  Simple, easy to understand
–  Genome length = n [3B]
–  Query length = m [7]
–  Comparisons: (n-m+1) * m [21B]

•  Overall runtime: O(nm)
 [How long would it take if we double the genome size, read length?]

 [How long would it take if we double both?]

Expected Occurrences
 The expected number of occurrences (e-value) of a given sequence in a
genome depends on the length of the genome and inversely on the length
of the sequence

–  1 in 4 bases are G, 1 in 16 positions are GA, 1 in 64 positions are GAT, …
–  1 in 16,384 should be GATTACA
–  E=n/(4m) [183,105 expected occurrences]

 [How long do the reads need to be for a significant match?]

0 5 10 15 20 25 30

0e
+0

0
2e

+0
8

4e
+0

8
6e

+0
8

Evalue and sequence length
cutoff 0.1

seq len

e−
va

lu
e

human (3B)
fly (130M)
E. coli (5M)

0 5 10 15 20 25 30

1e
−0

9
1e
−0

5
1e
−0

1
1e

+0
3

1e
+0

7

E−value and sequence length
cutoff 0.1

seq len

e−
va

lu
e

human (3B)
fly (130M)
E. coli (5M)

Brute Force Reflections
 Why check every position?

–  GATTACA can't possibly start at position 15 [WHY?]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

–  Improve runtime to O(n + m) [3B + 7]
•  If we double both, it just takes twice as long
•  Knuth-Morris-Pratt, 1977
•  Boyer-Moyer, 1977, 1991

–  For one-off scans, this is the best we can do (optimal performance)
•  We have to read every character of the genome, and every character of the query
•  For short queries, runtime is dominated by the length of the genome

Suffix Arrays: Searching the Phone Book
•  What if we need to check many queries?

•  We don't need to check every page of the phone book to find 'Schatz'
•  Sorting alphabetically lets us immediately skip 96% (25/26) of the book

without any loss in accuracy

•  Sorting the genome: Suffix Array (Manber & Myers, 1991)

–  Sort every suffix of the genome

Split into n suffixes Sort suffixes alphabetically

[Challenge Question: How else could we split the genome?]

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

Hi

Lo

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
•  Middle = Suffix[10] = GATTACC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
•  Middle = Suffix[10] = GATTACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 9;

Lo
Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
•  Middle = Suffix[10] = GATTACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 9; Mid = (9+9)/2 = 9
•  Middle = Suffix[9] = GATTACA…

 => Match at position 2!

Lo
Hi

Binary Search Analysis
•  Binary Search

 Initialize search range to entire list
 mid = (hi+lo)/2; middle = suffix[mid]
 if query matches middle: done
 else if query < middle: pick low range
 else if query > middle: pick hi range

 Repeat until done or empty range [WHEN?]

•  Analysis
•  More complicated method
•  How many times do we repeat?

•  How many times can it cut the range in half?
•  Find smallest x such that: n/(2x) ≤ 1; x = lg2(n) [32]

•  Total Runtime: O(m lg n)
•  More complicated, but much faster!
•  Looking up a query loops 32 times instead of 3B

 [How long does it take to search 6B or 24B nucleotides?]

Fast gapped-read alignment with
Bowtie 2

Ben Langmead and Steven Salzberg (2012) Nature Methods. 9, 357–359

In-exact alignment
•  Where is GATTACA approximately in the human genome?

–  And how do we efficiently find them?

•  It depends…
–  Define 'approximately'

•  Hamming Distance, Edit distance, or Sequence Similarity
•  Ungapped vs Gapped vs Affine Gaps
•  Global vs Local
•  All positions or the single 'best'?

–  Efficiency depends on the data characteristics & goals
•  Smith-Waterman: Exhaustive search for optimal alignments
•  BLAST: Hash-table based homology searches
•  Bowtie: BWT alignment for short read mapping

Searching for GATTACA
•  Where is GATTACA approximately in the human genome?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

Match Score: 1/7

Searching for GATTACA
•  Where is GATTACA approximately in the human genome?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

Match Score: 7/7

Searching for GATTACA
•  Where is GATTACA approximately in the human genome?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A …

Match Score: 1/7

Searching for GATTACA
•  Where is GATTACA approximately in the human genome?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

Match Score: 6/7 <- We may be very interested in these imperfect matches
 Especially if there are no perfect end-to-end matches

Similarity metrics
•  Hamming distance

–  Count the number of substitutions to transform one string into
another
! ! !GATTACA ! ! ! !GATTTTTACA!

 ! !|||X||| ||||XXXXXX!
! ! !GATCACA ! ! ! !GATTACA!
! ! ! !1 ! ! ! ! ! ! 6

•  Edit distance
–  The minimum number of substitutions, insertions, or deletions to

transform one string into another

! ! !GATTACA ! ! ! !GATTTTTACA!
 ! !|||X||| ! ! ! !||||XXX|||!
! ! !GATCACA ! ! ! !GATT---ACA!
! ! ! !1 ! ! ! ! ! ! 3 !

Theorem: An alignment of a sequence of length m
with at most k differences must contain
an exact match at least s=m/(k+1) bp long

(Baeza-Yates and Perleberg, 1996)
8	 2	

9	

10bp	 read	
1	 difference	

1	

x	 |s|	

7	

9	

8	

7	

6	

6	

5	

5	

9	

8	

7	

6	

4	

3	

10	

5	
–  Proof: Pigeonhole principle

–  1 pigeon can't fill 2 holes

–  Seed-and-extend search
–  Use an index to rapidly find short exact

 alignments to seed longer in-exact alignments
–  BLAST, MUMmer, Bowtie, BWA, SOAP, …

–  Specificity of the depends on seed length
–  Guaranteed sensitivity for k differences
–  Also finds some (but not all) lower quality alignments <- heuristic

Seed-and-Extend Alignment

Algorithm Overview

3. Evaluate end-to-end match

2. Lookup each segment and prioritize

1. Split read into segments

Questions?

http://schatzlab.cshl.edu

Suffix Array Construction
•  How can we store the suffix array?

 [How many characters are in all suffixes combined?]

S = 1 + 2 + 3 + · · ·+ n =
nX

i=1

i =
n(n+ 1)

2
= O(n2)

Pos

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

TGATTACAGATTACC

•  Hopeless to explicitly store 4.5 billion billion characters

•  Instead use implicit representation
•  Keep 1 copy of the genome, and a list of sorted offsets
•  Storing 3 billion offsets fits on a server (12GB)

•  Searching the array is very fast, but it takes time to construct

•  This time will be amortized over many, many searches
•  Run it once "overnight" and save it away for all future queries

Sorting
Quickly sort these numbers into ascending order:

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

[How do you do it?]

6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 13, 14, 29, 31, 39, 64, 78, 50, 63, 61, 19
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 50, 64, 78, 63, 61
6, 13, 14, 19, 29, 31, 39, 50, 61, 64, 78, 63
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78

http://en.wikipedia.org/wiki/Selection_sort

Selection Sort Analysis
•  Selection Sort (Input: list of n numbers)

 for pos = 1 to n
 // find the smallest element in [pos, n]
 smallest = pos
 for check = pos+1 to n

 if (list[check] < list[smallest]): smallest = check

 // move the smallest element to the front
 tmp = list[smallest]
 list[pos] = list[smallest]
 list[smallest] = tmp

•  Analysis

•  Outer loop: pos = 1 to n
•  Inner loop: check = pos to n
•  Running time: Outer * Inner = O(n2) [4.5 Billion Billion]

[Challenge Questions: Why is this slow? / Can we sort any faster?]

T = n+ (n� 1) + (n� 2) + · · ·+ 3 + 2 + 1 =
nX

i=1

i =
n(n+ 1)

2
= O(n2)

Divide and Conquer
•  Selection sort is slow because it rescans the entire list for each element

•  How can we split up the unsorted list into independent ranges?
•  Hint 1: Binary search splits up the problem into 2 independent ranges (hi/lo)
•  Hint 2: Assume we know the median value of a list

n

[How many times can we split a list in half?]

= < > 2 x n/2

= < > = = < > 4 x n/4

< = > = < = > = < = > = < = > 8 x n/8

16 x n/16

2i x n/2i

QuickSort Analysis
•  QuickSort(Input: list of n numbers)

// see if we can quit
if (length(list)) <= 1): return list

// split list into lo & hi
pivot = median(list)
lo = {}; hi = {};
for (i = 1 to length(list))

if (list[i] < pivot): append(lo, list[i])
else: append(hi, list[i])

// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

•  Analysis (Assume we can find the median in O(n))

 [~94B]

http://en.wikipedia.org/wiki/Quicksort

T (n) =

⇢
O(1) if n 1
O(n) + 2T (n/2) else

T (n) = n+ 2(
n

2
) + 4(

n

4
) + · · ·+ n(

n

n
) =

lg(n)X

i=0

2in

2i
=

lg(n)X

i=0

n = O(n lg n)

QuickSort Analysis
•  QuickSort(Input: list of n numbers)

// see if we can quit
if (length(list)) <= 1): return list

// split list into lo & hi
pivot = median(list)
lo = {}; hi = {};
for (i = 1 to length(list))

if (list[i] < pivot): append(lo, list[i])
else: append(hi, list[i])

// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

•  Analysis (Assume we can find the median in O(n))

 [~94B]

http://en.wikipedia.org/wiki/Quicksort

T (n) =

⇢
O(1) if n 1
O(n) + 2T (n/2) else

T (n) = n+ 2(
n

2
) + 4(

n

4
) + · · ·+ n(

n

n
) =

lg(n)X

i=0

2in

2i
=

lg(n)X

i=0

n = O(n lg n)

